Bounding Castelnuovo–Mumford regularity for varieties with good general projections
نویسندگان
چکیده
منابع مشابه
Characteristic-free bounds for the CastelnuovoMumford regularity
We study bounds for the Castelnuovo–Mumford regularity of homogeneous ideals in a polynomial ring in terms of the number of variables and the degree of the generators. In particular, our aim is to give a positive answer to a question posed by Bayer and Mumford in What can be computed in algebraic geometry? (Computational algebraic geometry and commutative algebra, Symposia Mathematica, vol. XXX...
متن کاملNon-regularity of multiplications for general measure algebras
Let $fM(X)$ be the space of all finite regular Borel measures on $X$. A general measure algebra is a subspace of$fM(X)$,which is an $L$-space and has a multiplication preserving the probability measures. Let $cLsubseteqfM(X)$ be a general measure algebra on a locallycompact space $X$. In this paper, we investigate the relation between Arensregularity of $cL$ and the topology of $X$. We find...
متن کاملRegularity of projections revisited
The concept of regularity in the meta-topological setting of projections in the double dual of a C∗-algebra addresses the interrelations of a projection p with its closure p, for instance in the form that such projections act identically, in norm, on elements of the C∗-algebra. This concept has been given new actuality with the recent plan of Peligrad and Zsido to find a meaningful notion of Mu...
متن کاملRegularity on abelian varieties
I will introduce the notion of Mukai regularity for coherent sheaves on abelian varieties, defined via conditions on the supports of the cohomologies of Fourier-Mukai transform complexes. In a very special form, depending on the choice of a polarization, this resembles and in fact strenghtens the classical notion of Castelnuovo-Mumford regularity. The techniques are in part a generalization of ...
متن کاملRegularity on Abelian Varieties I
This is the first in a series of papers meant to introduce a notion of regularity on abelian varieties and more general irregular varieties. This notion, called Mukai regularity, is based on Mukai’s concept of Fourier transform, and in a very particular form (called Theta regularity) it parallels and strengthens the usual CastelnuovoMumford regularity with respect to polarizations on abelian va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2000
ISSN: 0022-4049
DOI: 10.1016/s0022-4049(99)00126-7